CD PROJEKT RED*

The Witcher 3: Wild Hunt - ModKit Quick Guide
Sample Mod Creation Walkthrough

This document walks you through the process of creating four sample modifications for
The Witcher 3: Wild Hunt.

1. Getting Started
1.1 ModKit Introduction
1.2 Install ModKit
1.3 Uncook Game
2. “Witcher The Slav” Mod (modDresik)
2.1 Introduction
2.2 Export Assets
2.3 Modify Assets
2.4 Import Modified Assets
2.5 Cook and Pack the Mod
2.6 Add Mod to the Game
3. “Fabulous Roach” mod (modUnicorn)
3.1 Introduction
3.2 Export Assets
3.4 Import Modified Assets
3.5 Cook and Pack Mod
3.6 Adding the mod to the game
4. “Petard sWitcher” Mod (modBombs)
4.1 Introduction
4.2 Preparing Scripts Mod
4.3 Modify Scripts
4.4 Add Scripts to Game as a Mod
5. Custom Equipment Sets Mod (modEqSets) - Detailed Guidelines About Script
Modification
5.1 Preparing the Workspace
5.2 Setting up the CSetManager class with Support Structure ItemsSet
5.3 Adding CSetManager to playerWitcher.ws
5.4 The Final Step - Hooking the System into playerinput.ws
5.5 The Scripts Are Now Ready

1. Getting Started
1.1 ModK:it Introduction

ModKit is a set of command line tools that allow you to uncook and unpack the game,
export certain assets from it into modifiable formats, import them back into the form used
by the game and then cook and pack everything so those modifications can be applied to
the game. The main hub of the ModKit is wcc_lite.exe, which executes different
operations depending on the arguments provided. The easiest way to use wcc_lite is
through the Windows command prompt or batch files.

An overview of ModKit functionality can be found in the "ModKit - Quick Guide"
document.

1.2 Install ModKit

To start creating mods for The Witcher 3: Wild Hunt you must first install ModKit. To do
so, run the setup.exe file and follow the instructions. ModKit's main tool is called
wcc_lite.exe and is placed under [installation_path]\Witcher 3 Mod
Tools\bin\x64\. We will use it during the modding process for the various operations
described in this document.

1.3 Uncook Game

To uncook the game, launch wcc_lite with the appropriate arguments:

uncook -indir="<game_path>\content” -outdir="<dirpath>\Uncooked” -imgfmt=tga

Where game_path is the location where The Witcher 3: Wild Hunt is installed and dirpath
is where the uncooked game will be placed.

An example batch file might look like this:

call wcc_lite uncook -indir="C:\Program Files (x86)\GalaxyClient\Games\The
Witcher 3 Wild Hunt\content” -outdir="F:\Uncooked” -imgfmt=tga

2. “Witcher The Slav” Mod (modDresik)
2.1 Introduction

This mod shows how to create a modification by changing and replacing the textures of
Geralt’s starting outfit.

2.2 Export Assets

To export the assets required for this mod, you need to run wcc_lite in export mode; to
do so, use the arguments shown below:

wcc_lite export -depot=<dirpath>\Uncooked -file=<filepath> -out=<filepath>

where:
e depot - directory into which game has been uncooked (see “1.3 Uncook Game”)
e file - the relative path to the file that will be exported
e out - where the file will be exported
NOTE: wcc_lite needs to be launched in export mode for each file separately.

To modify Geralt’s starting look, | had to export the right textures:

e shirt - characters\models\geralt\armor\armor_shirt\t 01_mg__shirt_ d01.xom

e trousers - characters\models\geralt\armor\armor__ viper\l_01_mg__ viper_d01.xbm
e boots - characters\models\geralt\armor\armor__ viper\s_01_mg__ viper_d01.xbm

| used a batch file for that:

mkdir “F:\Mods\Dresik\Raw*

call wcc_lite export -depot="F:\Uncooked”
-file=characters\models\geralt\armor\armor_shirt\t_01 mg_shirt_de@1l.xbm
-out="F:\Mods\Dresik\Raw\t_01_mg__ shirt_deol.tga”

call wcc_lite export -depot="F:\Uncooked”
-file=characters\models\geralt\armor\armor__viper\1l_01_mg__ viper_d@l.xbm
-out="F:\Mods\Dresik\Raw\l 01 mg__ viper_dol.tga”

call wcc_lite export -depot="F:\Uncooked”
-file=characters\models\geralt\armor\armor__viper\s_01 mg__viper_d@l.xbm
-out="F:\Mods\Dresik\Raw\s_©1 mg_ viper_dol.tga”

That gave me three .tga files that | could edit.

2.3 Modify Assets

Next step after exporting the assets is to edit them. For textures, you can use any
graphical editor that supports the exported formats.. For example Photoshop, GIMP, MS
Paint, etc. (I used GIMP 2.8.14).

The results of my editing looked like this:

e Shirt:

e Trousers:

e Boots:

2.4 Import Modified Assets

After modifying, we need to import the assets back to the formats used by the game (in
the case of textures, it's .xbm). This process is very similar to exporting and uses
wcc_lite in import mode:

import -depot="<dirpath>\Uncooked” -file=<filepath> -out=<filepath>

where:
e depot - directory where the uncooked game is (see “1.3 Uncook Game”)
e file - path to the file that will be imported
e out - where the file will be imported
NOTE: Files in the output destination should be in their original directory structure (i.e. as in
the uncooked game)

Batch file that | used:

call wcc_lite import -depot="F:\Uncooked”

-file="F:\Mods\Dresik\Moded\t_01 mg__shirt_del.tga”
-out="F:\Mods\Dresik\Uncooked\characters\models\geralt\armor\armor_shirt\t_01 _mg_ sh
irt_del.xbm”

call wcc_lite import -depot="F:\Uncooked”
-file="F:\Mods\Dresik\Moded\1 01 mg__ viper_dol.tga”
-out="F:\Mods\Dresik\Uncooked\characters\models\geralt\armor\armor__viper\l 01 mg_ v
iper_de1l.xbm”

call wcc_lite import -depot="F:\Uncooked”
-file="F:\Mods\Dresik\Moded\s_01 mg__ viper_dol.tga”
-out="F:\Mods\Dresik\Uncooked\characters\models\geralt\armor\armor__viper\s_01 mg_v
iper_del.xbm”

2.5 Cook and Pack the Mod
Now that the assets are in the proper format, they need to be re-cooked, packed and

have their shader.cache and metadata.store files generated. To do so, we'll use wcc_lite
in four different modes (more about them in the "ModKit - Quick Guide" document)

| did it all in one batch file:

call wcc_lite cook -platform=pc -mod="F:\Mods\Dresik\Uncooked”
-basedir="F:\Uncooked” -outdir="F:\Mods\Dresik\Cooked”

call wcc_lite buildcache textures -basedir="F:\Mods\Dresik\Uncooked” -platform=pc
-db="F :\Mods\Dresik\Cooked\cook.db”
-out="F:\Mods\Dresik\Packed\modDresik\content\texture.cache”

call wcc_lite pack -dir="F:\Mods\Dresik\Cooked”
-outdir="F:\Mods\Dresik\Packed\modDresik\content”

call wcc_lite metadatastore -path="F:\Mods\Dresik\Packed\modDresik\content”

2.6 Add Mod to the Game

The last thing is to add the generated mod to the game. To do this, | just copied all the
files from the Packed directory (modDresik folder) into the <game_dir>\mods\ directory.

NOTE: The name of the folder with the mod must start with the word “mod” and can't
contain any spaces.

The easiest way to check if everything works is to start a new game or load a saved game
where Geralt has the items we modified in his inventory. Geralt’s outfit should look
somewhat different than usual:

Use your Witcher Se;skes.tu find Ih’eu
key to the bedroom door:

\'-
Jump | Space
%,

“
Witcher Senses [Hold]

NOTE: Since Geralt’s starting outfit has him wearing trousers and boots from the Hunting
set, this mod will change the look of those items throughout the game.

3. “Fabulous Roach” mod (modUnicorn)

3.1 Introduction

This example shows how to create a mod by modifying and replacing Roach’s textures
and meshes.

3.2 Export Assets

To export the assets required for this mod, you need to run wcc_lite in export mode
(more in: 1.3 Uncook game)

To modify Roach’s basic look, | had to export her:

e model -
characters\models\animals\horse\draftimodel\b_01_hd__brown_rideable.w2mesh
e textures

o characters\models\animals\horse\draftimodel\b_01_hd__ dirt d02.xbm
o items\horse items\saddles\model\s 01 _hd__common_d01.xbm
o items\horse_items\saddles\model\p_01_hd___common_d01.xbm

| used a batch file for that:

mkdir “F:\Mods\Unicorn\Raw

call wcc_lite export -depot="F:\Uncooked”
-file=characters\models\animals\horse\draft\model\b_01 hd__brown_rideable.w2mesh
-out="F:\Mods\Unicorn\Raw\b_01 _hd__ brown_rideable.fbx”

call wcc_lite export -depot="F:\Uncooked”
-file=characters\models\animals\horse\draft\model\b_01_hd__dirt_de2.xbm
-out="F:\Mods\Unicorn\Raw\b_01 hd__dirt_de2.tga”

call wcc_lite export -depot="F:\Uncooked”
-file=items\horse_items\saddles\model\s 01 hd__common_d@1l.xbm
-out="F:\Mods\Unicorn\Raw\s_01 _hd__common_do1l.tga”

call wcc_lite export -depot="F:\Uncooked”
-file=items\horse_items\saddles\model\p_01 hd__common_d@1l.xbm
-out="F:\Mods\Unicorn\Raw\p_01_hd__common_d@1l.tga”

That gave me .fbx and three .tga files that | could edit.
3.3 Modify Assets

The next step after exporting assets is to edit them.

For textures, you can use any graphical editor that supports the exported formats. For
example: Photoshop, GIMP, MS Paint, etc. (I used GIMP 2.8.14).

For meshes, you can use any 3D editor that can edit .fbx files. For example Maya,
Blender, 3D Max, MS Visual Studio, etc.

The results of my modifications looked like this:

NOTE: The exported .fbx contains three horse models; these are different LOD meshes
(Level Of Details, meshes used when a player is further away from horse) and all three
should be edited individually.

e Textures:

3.4 Import Modified Assets

After modifying, we need to import assets back to the formats used by the game (in case
of textures, that’s .xbm and for meshes it's .w2mesh). This process is very similar to
exporting and uses wcc_lite in import mode (more on that in: 2.4 Import Modified
Assets).

The batch file that | used:

call wcc_lite import -depot="F:\Uncooked”

-file="F:\Mods\Unicorn\Moded\b_01 _hd__brown_rideable.fbx”
-out="F:\Mods\Unicorn\Uncooked\characters\models\animals\horse\draft\model\b_01 hd__
brown_rideable.w2mesh”

call wcc_lite import -depot="F:\Uncooked”

-file="F:\Mods\Unicorn\Moded\b_01 hd__dirt_de2.png”
-out="F:\Mods\Unicorn\Uncooked\characters\models\animals\horse\draft\model\b_01 hd_
dirt_de2.xbm”

call wcc_lite import -depot="F:\Uncooked”
-file="F:\Mods\Unicorn\Moded\s_01_hd__common_do1l.png”
-out="F:\Mods\Unicorn\Uncooked\items\horse_items\saddles\model\s_01 _hd__common_de1l.x
bm))

call wcc_lite import -depot="F:\Uncooked”
-file="F:\Mods\Unicorn\Moded\p_01_hd__common_d@1l.png”
-out="F:\Mods\Unicorn\Uncooked\items\horse_items\saddles\model\p_01_hd__common_de@1l.x
bm))

3.5 Cook and Pack Mod

Once the assets are in the proper format, they need to be re-cooked, packed and have
their shader.cache and metadata.store files generated. To do so, we’'ll use wcc_lite in
four different modes (more about them in "ModKit - Quick Guide" document)

NOTE: If the mod didn't modify any textures, generating the texture.cache file can be
skipped.
| did it with a batch file:

call wcc_lite cook -platform=pc -mod="F:\Mods\Unicorn\Uncooked”
-basedir="F:\Mods\Uncooked” -outdir="F:\Mods\Unicorn\Cooked”

call wcc_lite buildcache textures -basedir="F:\Mods\Unicorn\Uncooked” -platform=pc
-db="F :\Mods\Unicorn\Cooked\cook.db”
-out="F:\Mods\Unicorn\Packed\modUnicorn\content\texture.cache”

call wcc_lite pack -dir="F:\Mods\Unicorn\Cooked”
-outdir="F:\Mods\Unicorn\Packed\modUnicorn\content”

::Generate metadata.store for mod
call wcc_lite metadatastore -path="F:\Mods\Unicorn\Packed\modUnicorn\content”

3.6 Adding the mod to the game

The last step is to add the generated mod to the game. To do this, | just copied all the
files from the Packed directory (modUnicorn folder) into the <game_dir>\mods\

directory.

NOTE: The Mod folder's name must start with the word “mod” and can’t contain any spaces.

To check if everything works, just launch The Witcher 3: Wild Hunt, load a saved game
or start a new one and summon your trusted mount. Roach should look different than

usual:

NOTE: Since Roach uses the same mesh and texture as some other horses in the
game, this mod will affect them as well

4. “Petard sWitcher” Mod (modBombs)

4.1 Introduction
This mod shows how to create a modification by modifying game scripts.
4.2 Preparing Scripts Mod

Game scripts can be found in:
<game_directory>\content\content@\scripts\

To create a script mod, the best solution is to use Script Studio, which is provided with
the Mod Tool (the .exe is in *\Witcher 3 Mod Tools\bin\x64\).

Launch it, select File > Create new mod, fill in the pop-up window with the appropriate
info and press OK.

Mod name | modBombs

Workspace F\Mods\Scriptst\Petard sWitcher Browse

Gamelnstall £\ GOG\The Witcher 3 Wild Hunt B

Mod name: What you would like to call this med.

Workspace: Location on your computer where you would like the mod te
reside, This should be away from the installation folder of your game

Game install: The root folder of the Witcher 3 installation on your
computer. For example:
CMGOG Games\\ The Witcher 3 Wild Hunt

Cancel

Script Studio will copy all the scripts and create a mod solution file in the provided
workspace location.

You can also copy scripts manually, as long as you remember to maintain their original
directory structure.

4.3 Modify Scripts

The easiest way to modify Witcher Script (.ws files) is to use the above-mentioned Script
Studio, but of course you can use any text editor of your choice if you wish (e.g.: MS
Notepad, Notepad++, Sublime Text, vi, Visual Studio, etc.).

4.4 Add Scripts to Game as a Mod

If modifications were made using Script Studio, just go to File > Install Mod and Script
Studio will copy all the necessary files to the proper destinations.

If you used another editor, copy the modified scripts (in their folders structure) to:
<game_directory>\mods\mod name\content\scripts\

In my case, the structure looks like this:

s <« Build » game » mods » modBombs » content » scripts » game » player - || Search player

Organize » Include in library » Share with = MNew folder H==

Name Date modified Type

-

=3 Libraries i o

2 p 8| playerdnput.ws 2015-07-23 16:20 WS File
£ Documents
R e |%] playerWitcherws 2015-07-23 16:20 WS File

@' Music

k=| Pictures

B videos

After launching the game (doesn’t matter which deployment method was used), a splash
screen showing the script compilation process appears:

Preparing to launch The Witcher 3: Wild Hunt

Compiling scripts {parsing file 399/1336)

If compilation finishes successfully, the game should launch (if it fails, a window with
compilation errors appears).

5. Custom Equipment Sets Mod (modEqSets) - Detailed Guidelines About Script
Modification

The following section will introduce you to the process of modifying scripts. We will
implement a custom equipment sets mechanism - the player will be able to define his own
equipped items presets and switch between them using hotkeys bound to the Select Specific
Sign action (by default, the number keys 3-7).

5.1 Preparing the Workspace
(see “4.2 Preparing Scripts Mod”)

List of required files:

game\player\playerWitcher.ws

game\player\playerinput.ws

game\setManager.ws - this file is new - create it in the “Local” group in solution tree
in Script Studio

All files are attached as sample mod “modEqSets” - please refer to them while reading this
walkthrough.

5.2 Setting up the CSetManager class with Support Structure ltemsSet

The following class is responsible for storing presets of items registered by the user,
registering new presets and returning previously-saved presets.

public function registerSet(slot : int, eqlList : array<SItemUniqueId>)
This function takes as parameters an int that indicates the slot number where the preset will
be saved, and an array of SltemUniqueld - ID numbers of items that we want to store.
In the function we iterate over an array of IDs, adding them into a new array object, wrapping
the array with an /lfemsSet struct and finally inserting the struct into the setsRegistered array.
NOTE: first we need to Erase the existing set form given slot, as the Insert method doesn’t
replace the existing item.

public function restoreSet(slot : int) : array<SItemUniqueld>
This function restores the set from setsRegistered and returns it in the form
array<SltemUniqueld>.

5.3 Adding CSetManager to playerWitcher.ws

We need to add CSetManager to playerWitcher, as it needs to have access to the Inventory
system. To do so, we add public property mSetManager. Before we can use it, it needs to
first be initialized - we create a new CSetManager object and call the Initialize() method at
the end of the OnSpawned event - this will be called after playerWitcher is spawned.

The final part of the playerWitcher.ws modification is to add the functions that will handle
registering and restoring sets for agiven slot number.

public function registerSet(slot : int)
This method gets list of all equipped items with GetEquippeditems() and sends it to
CSetManager.

public function restoreSetFromSlot(slot : int)
This function takes an array of SltemUniqueld from CSetManager, which represents the
stored set, unequips items from all slots and equips items from the set.

5.4 The Final Step - Hooking the System into playerinput.ws

| decided to hook the system into the OnSelectSign event, as that way we can use existing
key mappings and we don’t need to modify the .ini or .xml configs to set up new input
methods. The following modification will disable the default action for the number keys 3-7
and replace it with the new system.

First we add a bool var - it will determine if the player is in Set Register mode.

Next, we replace the existing functions with new ones - restoreSetFromSlot and registerSet,
and use theGame.witcherLog.AddMessage() to print a message into the on-screen log.

5.5 The Scripts Are Now Ready

Follow the instructions from “4.4 Add Scripts to Game as a Mod” to add them to the game as
a mod.

NOTE: Because “modBombs” and “modEqSets” modify the same .ws files they can’t be
used at the same time. By default the game will use the mod whose name comes first in
alphabetical order - in this case, modBombs. Mod order can be set using priorities in the
mods.settings file (more on that in the “ModKit Quick Guide” document, paragraph 11).
Since the code changes introduced in these two samples don’t directly interfere with each
other, they can be merged together and added to the game as one new, separate mod.

